
Sponsored by the U.S. Department of Defense
© 2003 by Carnegie Mellon University

August 2003 ONR 2003

Pittsburgh, PA 15213-3890

Building Secure Software With
The Team Software Process
Noopur Davis
Shawn Hernan

Naval-Industry R&D
Partnership Conference

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 2

Trademarks and Service Marks

The following are service marks of Carnegie Mellon University.
• Capability Maturity Model IntegrationSM

• CMMISM

• Team Software ProcessSM

• TSPSM

• Personal Software ProcessSM

• PSPSM

The following are registered trademarks of Carnegie Mellon University.
• Capability Maturity Model®
• CMM®

• CERT®

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 3

Overview
Defective software is not secure

The response strategy

The TSP-Secure strategy

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 4

Some Security Issues
Storage security
Transmission security
Personnel security
Physical security
Communication protocols
Encryption
• primitives
• protocols
• key management

Covert channels and
information leakage

Vulnerability remediation
• vendors
• users

Incident response
Intrusion detection
Deployment and
configuration
Application quality
Assurance and testing
Malicious software
Trust

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 5

The Security of Applications

“An external attacker’s first measure of success is to gain
the credentials of internal, legitimate users.”

“Today, the path of least resistance to this goal is not the
network gear, not crypto-mathematics, nor bribery; it is
application software.”

– -- Germanow et all

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 6

Defective Software is not Secure
Common software defects are a principal cause of
software security incidents.
• Over 90% of software security incidents are due to

attackers exploiting known software defect types.1
• Analysis of 45 e-business applications showed that

70% of the security defects were design defects.2

Conclusion: There is no such thing as a poor-quality
secure system.

1. CERT/CC
2. "The Security of Applications: Not All Are Created Equal" by Andrew Jacquith

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 7

Security Design Defects
Examples
• failure to authorize and authenticate users
• failure to validate user input
• failure to encrypt and/or protect sensitive data

Everyday software “bugs” are also a major risk.

For example, a buffer overflow can cause system failure or allow
a hacker to take control of a system.

Many common defect types can produce a buffer overflow.
• declaration error
• logic errors in loop control or conditional expression
• failure to validate input
• interface specification error

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 8

Never Make the Same Mistake Twice

Most vulnerabilities arise from similar causes.
• Top 10 causes account for about 75% of all

vulnerabilities.
• Of all the public security bulletins issued by Microsoft

from January 2002 through August 15, 2002, 50%
involved buffer overflows.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 9

A program is just a series of linear instructions.

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

Buffer Overflow - 1

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 10

Buffer Overflow -2
But how do you get to a different section of code?

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
jmp $sub

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
ret RA

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 3

Jump

Return

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 11

Buffer Overflow -3
Writing to the return address
• The goal is to gain control of the program.
• When a function exits, the address of the next instruction to

be executed is loaded from the return address on the stack
frame.

void myFunc(char **strNames)
{
char *tmpBuf[MAXNAMES];

for (int i=0; i <= MAXNAMES; i++)
{
tmpBuf[i] = (char *) malloc(MAXNAMELEN);
tmpBuf[i] = strNames[i];
}

}

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 12

Buffer Overflow -4
Overwriting the return address lets you take control. A
simple error can cause this!
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
jmp $sub

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
ret RA

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 3

After
overwriting
the return
address, the
program will
jump to a
location
chosen by
the intruder!

mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 2
add %1 $2
xor #4, 7
addl &4, &4
bizt 6,6
rst 0
mov %e, 1
sub %a, 3

This code
never gets
executed

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 13

Some History
November 1988: Morris Worm
Major component of the attack is a buffer overflow
vulnerability in fingerd
Incident affected between 2000 and 6,000 computers -- 5
to 10% of the whole Internet

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 14

Are We Having Fun Yet?
08/97: Widespread attacks against buffer overflows in UW IMAP
02/98: Widespread attacks against buffer overflows in rpc.statd
05/98: Widespread attacks against buffer overflows in BIND
02/99: Widespread attacks against buffer overflows in FTP
servers

08/99: Widespread attacks against buffer overflows in rpc.cmsd
11/00: Widespread attacks against buffer overflows in rpc.statd
03/00: Widespread attacks against buffer overflows in
snmpXdmid

06/01: Code Red
09/02: Slapper

What is significant about this?

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 15

Emulation Infidelity
One program often has to emulate the behavior of another
• Firewalls
• Virus-scanning programs

Vulnerabilities may occur because of emulation infidelity

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 16

One Recent Example
Firewalls have to examine packets
Hosts also have to examine packets
Flags determine the semantics of the packet
• SYN
• SYN&ACK
• FIN
• URG

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 17

The Meaning of Packets
What do the following packets mean
• SYN
• SYN&ACK
• SYN&FIN
• SYN&ACK&FIN

It depends on who you ask

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 18

The Semantics of “Connection Attempt”

One definition: SYN & !ACK
Under this definition, any of the following packets would be
“connection attempts”
• SYN&FIN
• SYN&URG
• SYN&URG&FIN

Another definition: SYN and nothing else

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 19

The Semantics of Connection Teardown

One definition: FIN and anything else
• SYN&FIN
• URG&FIN

Another definition
• FIN and nothing else

What, exactly, does SYN&FIN mean? Connection attempt
or connection teardown?
If the internal hosts and the firewall disagree, packets can
get through that will cause a connection to be established

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 20

Concerns
• Emulation infidelity shows up in lots of places
• Difficult to detect because IDS systems themselves are

forms of emulators

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 21

Overview
Defective software is not secure

The response strategy

The TSP-Secure strategy

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 22

What is a Vulnerability?
Different people have different definitions.

The CERT/CC has a shared understanding:
• Violates an explicit or implicit security policy.
• Usually caused by a software defect.
• Similar defects are the same vulnerability (e.g. SNMP was

2 vulnerabilities).
• Often causes unexpected behavior.

We specifically excludes from “vulnerability”:
• Trojan horse programs (evil email attachments)
• Viruses and Worms (self propagating code)
• Intruder tools (scanners, rootkits, etc.)

Vulnerabilities are the defects that permit these things to exist.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 23

The Response Strategy
The current software security approach could be called a
response strategy.

The development of software for secure applications is
handled the same way as other software.

This typically results in many delivered defects.

The manufacturer then waits for attackers to find
vulnerabilities (vuls) before developing fixes.

The system’s users then apply these fixes to prevent
further similar attacks.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 24

There Are Too Many Vuls to Patch
Vul reports from 1Q 2000 through 2Q 2002

0

200

400

600

800

1000

1200

Calendar Quarter (2Q 2002 projection using least squares as of June 3, 2002)

V
u

l R
ep

o
rt

s

Vul Reports 106 332 335 316 634 518 669 617 1064 1091

1Q
2000

2Q
2000

3Q
2000

4Q
2000

1Q
2001

2Q
2001

3Q
2001

4Q
2001

1Q
2002

2Q
2002

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 25

The Administrative Workload
5500 vulnerabilities reported in 2002
• 229 days to read vul descriptions (5500 vuls * 20

minutes per vul)
• 69 days to install 10% of patches (550 vuls * 60 minutes

per vul)

298 days just to read security news and patch a single
system!

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 26

The Response Strategy Is Failing
The response strategy accepts the costs of initial attacks.

It is impractical for system administrators.

It is expensive for suppliers.
• excessive development and repair costs
• unknown and possibly unlimited litigation exposures

It only addresses the vuls that are reported. Most security
incidents are not reported.

Net: The response strategy cannot consistently or
economically produce secure software.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 27

The TSP Security Strategy
TSP-Secure follows a prevention strategy.
• It is an extension of the TSP.
• TSP reduces delivered defects by orders of magnitude.

With proper development and testing, the security defects
are similarly reduced.

A continuing response capability is needed to address
new types of attack.
• TSP-Secure will be augmented to address new types of

attacks.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 28

Overview
Defective software is not secure

The response strategy

TSP-Secure

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 29

The Software Quality Problem
Software quality is highly variable and generally poor in
non-mission critical systems.

Widely-used operating system and application software
typically have over 2000 defects per MLOC.

If only 5% of these defects were potential security
concerns, there would be 100 vuls per MLOC.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 30

Software Practice and Quality
Software is the only modern technology that ignores
quality until test. Typically, software engineers
• do not plan their own work
• race through requirements and design
• do the design while coding

These practices introduce volumes of defects.
• Experienced engineers inject a defect

every 7 to 10 lines of code.
• For even moderate-sized systems,

there are thousands of defects.
• Most of them must be found in test.
• This usually takes about half of the

development schedule.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 31

The Problem with Testing

Hardware
failure

Operator
error

Resource
contention

Configuration

Safe and secure region =
tested (shaded)

Unsafe and insecure
region = untested
(unshaded)

Overload

Data error

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 32

TSP and Secure Software
The TSP provides a framework, a set of processes, and
disciplined methods for producing quality software.

Software produced with TSP has 1 to 2 orders of
magnitude fewer defects than current practice.
• 0.02 defects/KSLOC vs. 2 defects/KSLOC
• 20 defects per MSLOC vs. 2000 defects per MSLOC

If 5% of the defects are potential security holes, with TSP
there would be 1 vulnerability per million SLOC.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 33

TSP For Secure Software
TSP for Secure Software (TSP-Secure) is a joint effort of the
TSP team and SEI’s CERT group.

The work is based on proven TSP quality practices and CERT’s
extensive security skills and knowledge.

The goal of the project is to develop a TSP-based method that
can predictably produce secure software.

TSP-Secure will
• support secure development practices
• predict the likelihood of latent security defects
• be dynamically tailored to respond to new threats

TSP-Secure is being pilot tested with selected TSP teams.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 34

First TSP-Secure Pilot Workshop
The purpose of the workshop was to
• convince the team that

- software security is synonymous with software
quality

- the quality methods the team is already using with
the TSP and the PSP can be easily extended to
address security issues

• prove the feasibility of using the TSP to develop secure
software
- pilot and test initial ideas for TSP-Secure
- establish a baseline from which to expand and refine

TSP-Secure

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 35

Team Characteristics
Team characteristics
• all team members are PSP-trained
• team is using the TSP
• project has security requirements
• team members recently attended corporate security

training
• work products produced by the team would be subject

to one or more corporate security audits

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 36

Workshop –1

•Lecture and discussion on best practices for
secure software development.

Secure
Practices

•Overview of common causes of
vulnerabilities

•Discuss common causes of vulnerabilities
for this project

Common
Vulnerabilities

•Establish relationship between security and
quality

•Discuss current security issues for this
project

Introduction

TopicsLecture/
Exercise

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 37

Workshop –2

Hands-on exercise illustrating the
application of secure practices using an
Active Server Page (ASP) web application
•personal secure code reviews
•team secure code inspections

Secure
Implementation
Practices
Exercise

Wrap-up

•Hands-on exercise illustrating the
importance of sound design practices when
building secure software

•Discussion of design practices affecting
this project.

Secure Design
Practices
Exercise

Lecture and discussion on secure design
practices

Secure Design
Practices

TopicsLecture

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 38

Results -1
Personal code reviews were conducted using
• a REVIEW script
• an ASP code review checklist

Team inspections were conducted using standard TSP
• inspection script
• form
• measures

Team Yield was 96%!

 Defects

Engineer Name Major Minor Estimated
Yield

Engineer 1 13 3 50%
Engineer 2 15 2 58%
Engineer 3 22 2 85%
Engineer 4 15 1 58%
Engineer 5 13 2 50%
Engineer 6 15 5 58%
Engineer 7 13 2 50%
Engineer 8 16 1 62%

 Totals 96%

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 39

Results -2
Capture/Recapture predicted 1 defect remaining.

Most surprising result: a working application had a defect
density of 36.7 defects/KLOC.

Product Size 708
Size Measure LOC

Total defects found for (A) 15

Total defects found for all others (B) 24

Number of Defects Found in common (C) 14

Estimated Total Major Defects (AB/C) 26

Number of Major Defects Found (A+B-C) 25

Number of Major Defects Remaining 1

Number of Minor Defects Found 5

Meeting Time (minutes) 60

Total Meeting Effort (hours) 8.00

Total Inspection Hours 14.00

Overall Review Rate 32.2

Defects/Hour 1.1
Estimated Defect Density 36.7 per KLOC

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 40

Results -3
A TSP script for secure high-level design was used to re-
design the sample web application.

The exercise illustrated
• the importance of state-machine design and analysis
• that most security issues are best addressed during

design

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 41

Feedback and Project Results
The feedback from attendees of the workshop was very
positive.
• security training is a necessary prerequisite
• need to develop specific scripts, checklists, and other

practices
• proved the feasibility of TSP-Secure

The team completed the project on schedule with very few
overall defects (.49 defects/KLOC).

Security audit performed by security experts found ZERO
security code defects.

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 42

Next Steps
• conduct several more prototype workshops
• define security patterns
• develop the full workshop
• develop instructor training
• formulate introduction plans
• establish updating system to rapidly include any new

security threats as they are discovered

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 43

Summary
TSP helps organizations to establish a mature and
disciplined software engineering practice that
• improves cost and schedule predictability
• reduces time to market
• produces high-quality, reliable software, with fewer

security-related defects

TSP for Secure Software
• builds on the TSP/CERT background
• creates a development process for secure software
• provides introduction and transition capabilities

© 2003 by Carnegie Mellon University August 2003 ONR 2003 – TSP-Secure - 44

For More Information
Visit the TSP web site

http://www.sei.cmu.edu/tsp/

Contact Presenters
Noopur Davis nd@sei.cmu.edu
Shawn Hernan svh@sei.cmu.edu

Contact SEI customer relations
Software Engineering Institute,
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone, voice mail, and on-demand FAX: 412/268-5800
E-mail: customer-relations@sei.cmu.edu

See the book
Winning With Software: an Executive Strategy, by Watts
Humphrey, Addison-Wesley, 2002

	Trademarks and Service Marks
	Overview
	Some Security Issues
	The Security of Applications
	Defective Software is not Secure
	Security Design Defects
	Never Make the Same Mistake Twice
	Buffer Overflow - 1
	Buffer Overflow -2
	Buffer Overflow -3
	Buffer Overflow -4
	Some History
	Are We Having Fun Yet?
	Emulation Infidelity
	One Recent Example
	The Meaning of Packets
	The Semantics of “Connection Attempt”
	The Semantics of Connection Teardown
	Concerns
	Overview
	What is a Vulnerability?
	The Response Strategy
	There Are Too Many Vuls to Patch
	The Administrative Workload
	The Response Strategy Is Failing
	The TSP Security Strategy
	Overview
	The Software Quality Problem
	Software Practice and Quality
	The Problem with Testing
	TSP and Secure Software
	TSP For Secure Software
	First TSP-Secure Pilot Workshop
	Team Characteristics
	Workshop –1
	Workshop –2
	Results -1
	Results -2
	Results -3
	Feedback and Project Results
	Next Steps
	Summary
	For More Information

